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FOREWORD

This report documents work performed during a seven-month experimental
effort by Honeywell's Systems and Research Center under NASA Contract
NAS 8-10858, "Optimization of a Fluidic Control System.' The authors wish
to acknowledge the guidance and contributions given to this program by the
technical monitor, Mr. Steve Martin, NASA Manned Spacecraft Center,

Houston, Texas.
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OPTIMIZATION OF A FLUIDIC TEMPERATURE CONTROL DEVICE

By = J.M. Zabsky
D.R. Rask
J.B. Starr

SUMMARY

Controlling heat rejection in liquid-cooled space suits without having to bypass
the liquid flow around the garment demands a controller that produces a large
range of coolant temperatures. This program refined an existing fluidic tem-
perature control system developed under a prior study which modulated tem-
perature at the inlet to the liquid-cooled garment by using existing liquid supply
and return lines to transmit signals to a fluidic controller located in the space-
craft, This earlier system produced a limited range of garment inlet tempera-
tures, requiring some bypassing of flow around the su1t to make the astronaut
comfortable at rest conditions.

nerincemcents were mestly based on a flow visualization study of the key ele-
ment in the fluidic controller the fluidic mixing valve. The valve's mixing-
ratio range was achieved by making five key changes: 1) geometrical changes
to the valve; 2) attenuation of noise generated in proportional amplifier cas-
cades; 3) elimination of vortices at the exit of the fluidic mixing valve; 4) re-
duction of internal heat transfer; and 5) flow balancing through venting. As a
result, the refined system is now capable of modulating garment inlet tem-
perature from 45°F to 70°F with a single manual control valve in series with
the garment. This control valve signals without changing or bypassing flow
through the garment.



INTRODUCTION
.-

Under contract NAS 9-8249, Honeywell developed a fluidic control system
that modulates coolant temperature at the inlet of a liquid-cooled garment
connected to a spacecraft by an umbilical. To eliminate adding electrical or
hydraulic lines, temperatures are modulated by signals transmitted through
existing liquid supply and return conduits. The system modulates coolant
temperature in response to changes in pressure drop across the liquid-cooled
garment. Modulation takes place within a fluidic temperature controller,
which could be located within the spacecraft. The controller contains no
moving parts and responds to pressure signal differentials of less than 0.1
inch of water,

Heart of the controller is a fluidic mixing valve developed under the contract.
This valve modulates the mixture ratio of cold water flow to total garment
flow over the range 0.1 to 0.9. In general, the mixture ratio of 0.9

lowers temperatures enough for adequate cooling; however. the 0.1 lower
limit of the mixture ratio limits the minimum cooling rate to about 700 BTU's
per hour. Thus, when the subject is resting and his metabolic rate is lower
than 400 BTU's per hour, cooling is excessive. A temporary solution has
been to use flow modulation by routing the coolant around the liquid-cooled
garment through a bypass. Such bypassing. however, somewhat increases
the complexity of the manual control valve.

Through flow visualization experiments, the fluidic mixing valve can be
designed to broaden the range of mixture ratios, thus reducing the lower
cooling limit of the system. Such experiments show flow patterns within the
fluidic device, thereby suggesting changes in device geometry to extend mix-
ture ratio range.

Presented herein are the results of such a study to improve controller perfor-
mance, thus increasing the range of garment inlet temperatures. Controller
refinements resulted from changing mixing valve geometry, reducing noise,
balancing flow, and reducing heat transfer. The refined system can deliver
water temperatures ranging from 45°F to 70°F. A single, manually controlled
valve modulates temperature without bypassing or reducing flow through the
garment.



EXISTING SYSTEM DESCRIPTION

The existing fluidic temperature control of liquid-cooled space suits was
developed under NASA Contract No. NAS 9-8248. Reference 1 fully describes
the control system analysis, fabrication details. and performance. The
system modulates coolant temperature at the inlet of a liquid-cooled garment
" connected to a spacecraft by an umbilical. Temperature modulation occurs in
response to sensed changes in pressure drop across the garment. All control
signals are transmitted through existing liquid supply and return conduits to a
fluidic temperature controller located in the spacecraft. The no-moving-
parts controller responds to pressure-difference signals of less than 0.1 inch
of water and modulates temperature through a fluidic mixing valve. A special
manual control circuit located at the garment permits selecting three different
levels of cooling. The manual control adjusts the cooling level through com-
bining inlet temperature with garment flow rate modulation.

The system concept (Figure 1) for the liquid-cooled garment includes a cir-
cuit consisting basically of two flow loops. One loop includes the liquid-
cooled garment (LCG) and the other a heat exchanger (HEX) for liquid cooling.
If no fluid flows from the HEX loop to the LCG loop, then water present in the
liquid-cooled garment is recirculated. In theory, its temperature will
approach that of the skin of the astronaut. This corresponds to a zero-
cooling—rate situation. Coolmg rate is increased hy allowmg 11qu1d to flow
from the HEX loop inte the LCG loop. Maximmurm covling ocCul's whern the
crossover flow between the loops is equal to the flow through the heat
exchanger.

Control signals which drive the temperature controller are produced within a
fluid circuit, which acts essentially like a Wheatstone bridge. The umbilical,
liquid-cooled garment, three-way valves, and orifice constitute a "'garment
circuit'' which makes up one leg of the bridge. Resistance Ry. Ry, and Rg
form, respectively, the remaining three legs of the bridge. Rg is adjustable
to compensate for changes in umbilical flow resistance. Such compensation
makes the system adaptable to a wide range of umbilical lengths. A change
in cooling rate can be produced by varying a resistance located in the garment
circuit.

Controller

The basic function of the fluidic temperature controller is to vary the ratio of
warm fluid to cold fluid flowing to the liquid-cooled garment by responding to
a relatively small pressure-difference signal generated in the bridge circuit
(see Figure 1). The controller accepts the pressure signals at the bridge
design levels and amplifies them to the magnitude required to modulate the
mixing of warm and cold fluid.
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Figure 2 shows a photograph of the assembled temperature controller. A
schematic of the controller circuit is shown in Figure 3. The controller con-
sists of the following fluidic components:

© One 2-stage signal pressure level reducer
© Two 3-stage proportional amplifier cascades
© One mixing valve

In addition to these elements, the controller assembly incorporates three
legs of the Wheatstone bridge.

The control pressure level reducer decreases control pressures to the con-
troller and preserves control pressure difference. The proportional cascades
provide controller sensitivity by amplifying both the pressure-difference sig-
nal generated by the bridge and the flow rate of the control fluid. The mixing
valve modulates the warm and cold fluids, and provides on signal the desired
mixing command from the proportional cascades. The fluidic mixing valve
(Figure 4) is the key component of the controller.

Performance

The fluidic mixing valve produces a minimum mixing ratio of 0.10. ith the
mixing valve incorporated into the temperature contrcoller, 2 system miving
ratio of 0. 12 is obtained, which is equivalent to a cooling rate of about 750
BTU-hr. So that the subject is comfortable at rest (the subject having a meta-
bolic rate of about 400 BTU/hr), a valve circuit throttles and bypasses flow

to maintain sufficiently low cooling rates. The system provides a maximum
garment inlet temperature of about 60° F,

MIXING VALVE FLOW PATTERNS

The main thrust in the controller refinement has been to optimize flow char-
acteristics of the mixing valve. The procedure was basically an experi-
mental approach using flow visualization techniques developed during this
study. The actual viewing of flow patterns within the mixing valve provided
the basis for valve modifications to expand its mixing ratio capability.

~Flow patterns within the fluidic mixing valve depend primarily on the deflec~
tion of power jets. In Figure 5, flow patterns are indicated by arrows for
the situation of zero jet deflection. This occurs, of course, when control
pressures fed into the fluidic mixing valve are equal. The power jets from
the two nozzles impinge against their respective splitters and are diverted
partially to the LLCG and partially to the heat exchanger.. Hence, a zero jet
deflection produces a mixture-ratio of 0.5.
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Deflecting the power jets in opposite directions produces extreme mixture
ratios. Under this condition, one of three flow patterns may exist within the
fluidic mixing valve. Ideally, a mixture ratio of either 0 or 1.0 calls for the
flow pattern shown in Figure 6(b). Under this condition, the geometry of the
device and the power jet deflections are such that a stagnant flow region,
indicated by the shaded area, exists within the device. Only warm water
flows to the LCG and only cold water to the heat exchanger. If this flow pat-
tern could be produced within the controller, it would be easy to generate
sufficiently low cooling rates to maintain a satisfactory thermal state, Thus,
the flow pattern in Figure 6(b) does not exist within the fluidic mixing valve,
More likely flow patterns are those of either Figure 6(a) or 6(c). Such patterns
were of the type which resulted from the work done in the previous contract,
as noted in Reference 1. For the pattern indicated in Figure 6(a), momentum
differences within the device are high enough to cause the flow to move past
the exit portandthen recirculate around the opposite end of the splitter. In
Figure 6(c), flow from one stream has insufficient momentum to stop the flow
of fluid from an opposite direction. Flow conditions as defined by either
F1gures 6(a) or 5(c) could be eliminated through a proper selection of dimen-
sions nAn HBH.

EXPERIMENTAL FLOW VISUALIZATION APPARATUS

The basic flow visualization technique uses near zero-buoyancy particles
(polystyrene spheres) as tracers within the operating liquid (distilled water).
These tracers indicate the flow patterns within the mixing valve and facilitate
determining mixing ratio by permitting an actual particle count from the

valve exita. During the flow visualization experimenis, the mixing vaive
simulates its functmn in the temperature control circuit. Figure 7 illustrates
the flow circuit of the experimental apparatus. The circuit simulates the heat
exchanger by a filter which screens out the polystyrene spheres. This simu-
lation permits the spheres to represent heat units. As the spheres are fil-
tered by the simulated heat exchanger, they are recirculated into the warm
loop. This recirculation simulates heat addition in the liquid-cooled garment.
The experimental apparatus permits visualizing flow of the same sized mixing
valve as that used in the temperature controller.

Polystyrene spheres are separated from exit flows in a specially designed
reservoir. Both returns from the mixing valve are dumped in the hollow
center cylinder housing the stirrer. The returned spheres are prevented
from mixing with the simulated cold supply by a screen at the bottom of the
center cylinder. The stirrer disperses the spheres to provide a simulated
warm supply to one pump. Then, the returned liquid, without spheres,
serves as the simulated cold supply to the other pump. The polystyrene
spheres are sieved prior to entering the system to obtain a uniform size dis-
tribution. Sphere diameters range from 0.020 to 0.040 of an inch, which
permits determining mixing ratios easily and accurately.

Figure 8 is a photograph of the mixing valve used in the experimental appara-
tus. The valve is a cast transparent epoxy model which permits illuminating
the spheres in their flow patterns. Expemmentatmn produced a lighting tech-
nique which makes the spheres highly visible; light is used which travels in

10
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the same plane as the flow, as well as perpendicular to the flow. Th(} model
is fitted with a clear transparent cover. All channels are blackened for con-
trast to facilitate visualization and photography. Ten pressure taps in the
cover permit a continuous monitoring of pressure changes in the model as
experimental investigations progresses. The mixing valve model is the same
overall size as the one used in the temperature controller.

A viewing glass allows seeing the mixing ratio based on the spheres exiting
from the experimental model. When the sphere-liquid mixture is homogenous,
the procedure is to count the number of particles in each channel between
scribed lines, The mixing ratio is determined by dividing the number of
spheres in one channel by the total number in both channels. At mixing ratios
near zero and one, the particles are counted over a given time interval. This
is necessary since the sphere spacing in the low density channel may be such
that no spheres would appear during the photographic time interval. In prac-
tice, the mixture is non-homogenous; therefore, a number of photographs are
taken and averaged, Three exposures are taken on one frame which essenti-
ally increases the number of spheres between the scribed lines. Figure 9 is
a photograph showing the results of strobing the viewing glass three times.
Note that the spheres are easily counted, and, thus the mixing ratio easily
determined,

AREAS OF CONTROLLER REFINEMENT

Experimental studies reveal controller performance can be improved in several
areas, A discnssion and where poggible an agsessment of these areac are pre-
sented below,

Exit Vortices

As shown by the flow visualization apparatus, the mixing valve exit pressures
fluctuated randomly during the experimental investigations. These fluctuations
were attributed to vortex flow patterns being set up in the mixing valve exit
passageways. Vortices were eliminated by installing flow straighteners in
each exit of the mixing valve.

Geometry Optimizing

The flow visualization experiments were conducted on an adjustable, mixing
valve model. To fully concentrate effort on mixing valve optimization, neither
proportional amplifier cascade was included in the visualization studies.
Eighteen different valve configurations were tested, including the original
design. Table 1 presents the configuration dimensions tested and the mixing
ratio experimentally obtained for each case. Figure 10 defines the dimensions
A, B, and C used in the table. The best configuration tested (run Number 8,
having a mixing ratio of 0. 04) was refined further by investigating the effects
of small perturbations of dimension B and by rounding all corners on the up-
stream edges of the receiver legs. Figure 10 also shows the locations of the
added radii refinements, These refinements improved the minimum mixing
ratio to 0.03. The optimum mixing valve dimensions are:

14
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TABLE 1. - VISUALIZATION TEST RUNS

Valve Dimensions, In,
Run Number | A B C Mixing
Ratio
1 0.32 0.24 0.90 0.22
2 (orig.) 0.32 0.16 0. 90 0.07
3 0.32 0.11 0.90 0. 27
4 0.48 0.24 0.90 0.22
5 0.48 0.16 0.90 0.08
6 0.48 0.11 0. 90 0.24
7 0.21 0.24 0.90 0.27
8 0.21 0.16 0. 90 0.04
9 0.21 0.11 0. 90 0. 26
10 0.32 0. 24 1. 10 0.21
11 0.32 0.16 1. 10 0.08
12 0.32 0.11 1. 10 0.24
13 0.48 0.24 1.10 0.21
14 0.48 0.16 1.10 0.07
15 0.48 0.11 1,10 0. 25
16 0.21 0.24 1.10 0.20
17 0.21 0.16 1.10 0.05
18 0.21 0.11 1.10 0.28

* See Figure 10



A = 0.21 inch
B 0. 14 inch
C = 0.90 inch

The original valve shown in Table 1, Run Number 2, has a mixing ratio of
0,07,

Amplifier Noise

The optimized mixing valve having a mixing ratio of 0. 03 was bench tested
with the proportional cascades in the circuit. The performance degraded to
a mixing ratio of 0,06. Experiments showed degradation was due to noise
generated by the cascades, An analysis of noise dampening plenums (see
Appendix A) resulted in incorporating plenum chambers in the control lines
between the proportional cascades and the mixing valve. By adding the ple-
nums, the mixing ratio, as determined by flow visualization techniques, im-
proved to 0, 03 again. The four plenum chambers permit a minimum disrup-
tion when incorporated into the basic controller design. Two additional layers,
each having two plenurns, are added to the controller stack (Figure 11). In
conditions of zero gravity, thin flexible air bag containers could be incorpor-
ated inside each plenum chamber to maintain a gas-water interface,

Heat Transfer

All flow visualization experiments were conducted with essentially a constant-
temperature liquid, When the optimized mixing valve was operated with a cold
water supply and the liquid-cooled garmet heated by a radiant heater, the per-
formance (based on temperature measurement) degraded to a mixing ratio of
0.08. To verify that a portion of the degradation was due to heat transfer
through the valve material, a simple experimental test was conducted. The
mixing valve receiver channels were blocked in two places (Figure 12) to
eliminate mixing the cold and warm water. The cold water entered the valve
and exited without mixing with the warm water., A pseudo-mixing ratio was
gotten of 0. 014, based on temperature measurements. This indicated that the
valve material formed a conduction path between the two thermall}r different
liquids, thereby creating the pseudo-mixing ratio. To lower the "thermal
short' between the warm and cold liquids, thermal-barriers (air gaps) are
incorporated in the mixing valve body.

Flow Balancing

Since the conductive heat transfer accounted for about 0, 014 degradation of
the mixing ratio, other experimental techniques were explored to ascertain
why the performance had degraded. A flow balancing procedure was pursued
by incorporating a vent in the cold interaction region of the mixing valve and
routing the vent flow to the cold exit, For testing flexibility, another vent

was incorporated in the warm interaction region to the warm exit. The mixing
valve, when tested for performance based on temperature measurement,

18
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produced a pseudo-mixing ratio of 0. 05, The best performance occurred
with 10 percent of the cold flow vented, the warm vent closed, and the cold
supply flow about 10 percent greater than the warm supply flow rate.

MANUAL CONTROL VALVE

The manual control valve (Figure 13) on the garment adjusts the cooling rate
through temperature modulation. No flow is bypassed, and the flow rate
through the garmet remains unchanged. A valve indicator plate displays three
major valve settings: warm; medium; and cold. The one valve, infinitely vari-
able over the range displayed on the plate, replaces the flow-diverting valving
system which modulated flow rate to the garment. An improved system con-
cept incorporating the adjustable manual control valve is shown in Figure 14.

SYSTEM OPERATION

Garment inlet temperatures are varied by changing the flow resistance through
the previously described manual control valve. Closing the valve reduces
PCR1, the control pressure at one inlet port of the pressure level reducer,
with respect to PCR2, the control pressure at the other reducer inlet port. The
net result is increased mixing between the LCG and HEX loops and a lower
garment inlet temperature,

Experimental characterization of the systein is represented by the data in
Figure 15, These data indicate that maximum cocling ocecurs for PCR2 =
PCR1, moderate cooling for a differential of 0. 25 inch of water, and mini=
mum cooling for pressure difference in excess of 0.5 inch of water, The
minimum garment inlet temperature is 2°F above cold supply temperature,

Maximum inlet temperature is 28, 5°F above cold supply temperature.

Pressure differences produced by the "W", "M", and '""C" positions of the
manual control valve are indicated in Figure 15, These data are for a 50 ft
umbilical with 3/8 in, I.D, liquid conduits,

For umbilicals of shorter or longer length, adjustments can be made to
achieve the same sensitivity of garmet inlet temperature to change in valve
flow area, The relations between temperature and control pressure differ-
ence (see Figure 15) are independent of umbilical length. Hence, the desired
sensitivity is achieved if the "W', "M'" and "C" setting correspond to the
pressure differences indicated in the figure, A pressure difference of zero
at the '"C" setting is readily obtained through adjusting A3 on the face of the
controller (see Figure 11). The pressure difference produced at the "W" set-
ting depends on the fractional change in flow resistance in the garment circuit
produced by going from the "C" to "W'" setting, hence, an increase in pres-
sure difference at the "W'" setting results from the "C" setting (and zero
pressure difference) occurring at a smaller flow area through the valve and
vice versa. The dial on the valve shown in Figure 13 is adjustable to facilitate
corresponding the flow area with the ""C" setting.

o
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CONCLUSIONS

1. A refined fluidic temperature controller can regulate garment inlet

temperatures from 45°F to 7T0°F without using external heat sources.

2. Simulated mixture ratios, based on temperature measurements, as
low as 0.074, can be produced by the fluidic controller. This re-
sidual mixing ratio is a sum of the following contributions:

e Physical mixing: 0.030
e Heat transfer: 0.014

e Control flow interchange between
HEX and LCG loop 0.030
Total 0.074

3. Modulating inlet temperature can be achieved by a single valve in series

with the LLCG. No bypassing or changing of garment flow is required.
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APPENDIX A
ATTENUATION OF PRESSURE FLUCTUATION

Attenuating pressure fluctuation in a liquid system requires introducing a
compressible medium, such as air, in a plenum-type device (see Figure Al),
The device receives a time-dependent pressure signal, Pg, and produces
pressure, Pe, with fluctuations in time that are greatly attenuated. Extent
of attenuation can be estimated from the formulae derived in the following
analysis, '

Assume that pressures can be divided into average and time-varying com-
ponents, i,e,

PC Pc+5PC

Ps = PS+6PS

1

where §Pg and §P. are considerably less than Py and P., respectively.
Further assume that the plenum pressure, Pp, is essentially constant and
equal to P.. Fluctuations in P¢ will, thus, cause the slug of fluid of length,
L, cross-sectional area, A, and density, p, to accelerate at a rate given by
.. (P -PA
x = C P

p LA
oP
= S (A1)
p L
By continuity,
ms-mC = pxA - (A2)

or

Ay/20 (P-P) - Ac\/zp P_=p XA (A3)

However, since the §P's are much less than the P—"s,

T oP_ - &P
A \/zp (P -P ) 1+1 -5 ¢
s s ¢ 2 =
P -P
s c
— [ | 8P, .
~ AN\/20 P |1+5— = pxA 4 (A4)
c c 2
Pe
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Figure Al, Schematic of Damper



The terms As‘\/’.‘-?p(f’s-f’c) and ACV 2p Po are approximate time-averaged
flow rates, and must, therefore, be equal. Thus, (A4) becomes, after some
rearrangement,

o . L .
A" (5P -GPC) - Ac 6P, =mx A (A5)

where
m = m_ = m
C s

Differentiating (A5) and combining with (A1) results in the equation

. 2
d(GPC) + m A GPC _ AS d(éPS) (A6)
dt 2 .2 2 2 dt
pL(AS + AC ) AC + Asv

For 5P, = IGPS| cos wt, the steady state solution for (A6) is

R|5P8|w
6P, = ——————— (Z cos wt + w sin wt) (A7)
c 9 9 T
w + (1/1)
where Asz
Ro=———7 (A8)
AT+ A
c S
and o 9
. pL(AS +AC ) (A9)
mA
An amplitude attenuation factor M is given
6P| R
M = ‘ ' = (A10)
oP 1
s 1+ 55
T W

Increasing attenuation thus results from décreasing R and decreasing .
This is accomplished for a given w by

) Decreasing AS with respect to AC

@ Decreasing L

] Increasing A

The damping plenums used in the fluidic controller have the following approxi-
mate dimensions and operating conditions:



p = 1,94 slugs/cu ft
2
A = 0.25 in,
I, = 1in,
m = 48 1b per hr
A = 00,0048 in. 2
¢ 2
AS = 0.0123 in,

These conditions result in 7 = 0.0019 sec and R = 0. 87. The amplitude at-
tenuation factor for several values of w/2m is given in Table A-1, These
data indicate that the plenums will effectively attenuate fluctuations at {re-
quencies under 10 cps.

TABLE A-1, - AMPLITUDE ATTENUATION BY DAMPING

PLENUMS
()]
B M
1 0.0103
10 0.092
100 0. 556
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